
504-REN-UI-TP

MISSION OPERATIONS AND DATA SYSTEMS DIRECTORATE

Renaissance
User Interface

Transition Plan

Original Draft

August 1994

National Aeronautics and
Space Administration

Goddard Space Flight Center
Greenbelt, Maryland

Renaissance
User Interface

Transition
Plan

Original Version

August 29, 1994

Approved By:

Gary Meyers Date
Renaissance Team, Code 504

Goddard Space Flight Center
Greenbelt, Maryland

File ID Document No.

Section 1. Introduction

1.1 Purpose and Scope1-1

1.2 Document Organization1-1

1.3 Related Documents .. .1-1

1.4 Terminology..1-2

Section 2. RENAISSANCE PROJECT SCHEDULES

2.1 ACE Schedule..2-1

2.2 SMEX-4 SCHEDULE..2-1

2.3 FUSE Schedule..2-2

2.4 Future Spacecraft .. .2-2

Section 3. USER SERVICES TRANSITION PLAN

3.1 ACE Goals..3-2

3.2 SMEX-4 GOALS..3-3

3.3 FUSE Goals..3-3

3.4 Long-Term Goals..3-5

Section 4. BUILDING BLOCK TRANSITION PLANS

4.1 RENAISSANCE Widget Library..4-1

4.1.1 Mapping to Standards and Guidelines...4-1
4.1.1.1 User Interface Standards..4-2

4.4.1.2 Renaissance Standards...4-2

4.4.1.3 User Interface Guidelines4-3

4.4.1.4 Renaissance Guidelines..4-3
4.1.2 Action Plan..4-4

4.2 Transportable Payload Operations control Center (TPOCC) Display Subsystem..............4-5

4.2.1 Mapping to Standards and Guidelines...4-5

4.2.1.1 User Interface Standards4-5

4.2.1.2 Renaissance Standards...4-6

File ID Document No.

4.2.1.3 User Interface Guidelines4-6

4.2.1.4 Renaissance Guidelines..4-7
4.2.2 Action Plan..4-8

4.3 Generic Spacecraft Analyst Assistant (GenSAA)..4-9

4.3.1 Mapping to Standards and Guidelines...4-9

4.3.1.1 User Interface Standards4-9

4.3.1.2 Renaissance Standards...4-9

4.3.1.3 User Interface Guidelines4-10

4.3.1.4 Renaissance Guidelines..4-11
4.3.2 Action Plan..4-11

4.4 SpaceCAM..4-12

4.4.1 Mapping to Standards and Guidelines...4-12

4.4.1.1 User Interface Standards4-12

4.4.1.2 Renaissance Standards...4-13

4.4.1.3 User Interface Guidelines4-13

4.4.1.4 Renaissance Guidelines..4-14
4.4.2 Action Plan..4-14

4.5 Generic Trend Analysis System (GTAS)...4-15

4.5.1 Mapping to Standards and Guidelines...4-15

4.5.1.1 User Interface Standards4-15

4.5.1.2 Renaissance Standards...4-15

4.5.1.3 User Interface Guidelines4-16

4.5.1.4 Renaissance Guidelines..4-16
4.5.2 Action Plan..4-17

4.6 MISSION OPERATIONS PLANNING AND SCHEDULING SOFTWARE (MOPSS)
GRAPHICAL USER INTERFACE..4-19

4.6.1 Mapping to Standards and Guidelines...4-19

4.6.1.1 User Interface Standards4-19

4.6.1.2 Renaissance Standards...4-20

4.6.1.3 User Interface Guidelines4-20

4.6.1.4 Renaissance Guidelines..4-21
4.6.2. Action Plan..4-23

4.7 User Interface and Executive (UIX)...4-24

4.7.1 Mapping to Standards and Guidelines...4-24

4.7.1.1 User Interface Standards4-24

4.7.1.2 Renaissance Standards...4-24

4.7.1.3 User Interface Guidelines4-25

File ID Document No.

4.7.1.4 Renaissance Guidelines..4-26
4.7.2 Action Plan..4-26

4.8 PACOR II Information and Control Subsystem (PICS)..4-28

4.8.1 Mapping to Standards and Guidelines...4-28

4.8.1.1 User Interface Standards4-28

4.8.1.2 Renaissance Standards...4-28

4.8.1.3 User Interface Guidelines4-29

4.8.1.4 Renaissance Guidelines..4-30
4.8.2 Action Plan..4-30

4.9 Quality Analysis Workstation Subsystem (QAWS)4-31

4.9.1 Mapping to Standards and Guidelines...4-31

4.9.1.1 User Interface Standards4-31

4.9.1.2 Renaissance Standards...4-31

4.9.1.3 User Interface Guidelines4-32

4.9.1.4 Renaissance Guidelines..4-33
4.9.2 Action Plan..4-33

4.10 SOHO Simulator USER INTERFACE..4-34

File ID Document No.

Renaissance

Section 1. Introduction

This section provides an introduction to the Renaissance User Interface Transition Plan by listing
the document's purpose, scope and organization, and by detailing the set of relevant documents
and terms useful to the reader.

1.1 Purpose and Scope

The Renaissance User Interface Transition Plan describes the overall plan for transitioning legacy
user interfaces developed within the Mission Operations and Data Systems Directorate (MO&DSD)
into the form required for the Renaissance project. The document also describes the long-term plan
for the evolution of user interface technology once the initial integration of legacy software is
complete. This document is intended for managers and system developers who need to plan and
implement changes in existing user interface software building blocks to allow their incorporation
into the Renaissance user environment.

This document is maintained by the User Services Working Group which reports to the MO&DSD
Renaissance Team. The working group will update the document to reflect any changes made to
the schedule or approach for the evolution of Renaissance user services building blocks.

1.2 Document Organization

This document is divided into four sections. The first section provides this background
information on the purpose and organization of the document. Section 2 describes the overall
Renaissance project schedule and any existing Renaissance commitments for support of upcoming
spacecraft missions. Section 3 describes the overall transition approach for the user services
software within the Renaissance project. Finally, Section 4 defines the steps that need to be taken
to update each candidate software building block within MO&DSD to operate in the Renaissance
user environment.

1.3 Related Documents

For additional information about Renaissance and the user services working group, consult the
following documents:

1. Open Software Foundation (OSF)/Motif Style Guide

2. Renaissance User Interface Implementation Guide

3. Renaissance User Services Building Block Specifications

User Services Transition Plan 1-1 August 29, 1994

Renaissance

1.4 Terminology

The following terms are defined in this section and appear throughout the document:

Application: A software element external to the sphere of the USWG for which the USWG
must provide a user interface. Although many applications will fall into the sphere of the
Applications Services Working Group, this definition permits elements from the data services,
simulation, and spacecraft communication working groups to be considered applications. This
term is most commonly used in this document to refer to the non-user interface related portion of a
software function.

Building block: A loose term for generic or tailored subsystem, element or subelement.

Component: An element within a graphical user interface (GUI) that is identifiable to the user as
a distinct entity. Examples of components include push buttons, menu bars, and text fields.

Generic: A generic system, subsystem, element , or subelement is one that is always used with
no modifications from mission to mission. Mission configurability may be achieved through data
parameters or through tailoring .

Guideline: A characteristic of a software building block that can be evaluated to determine the
degree of applicability that building block possesses for use within the Renaissance environment.
Guidelines will be used both to steer the development of new building blocks and to evaluate the
legacy building blocks available within MO&DSD to determine which should become the baseline
set of Renaissance building blocks.

Mission-Specific: A mission-specific system, subsystem, element , or subelement is one that is
developed and managed for a specific mission.

Software Backplane: The set of Renaissance-standard APIs for providing communications
between software elements. Conceptually, elements "plug into" the standard interfaces of the
backplane (in analogy to a hardware backplane).

Software Element: An independently executing software unit that communicates with other
software elements solely through the standard interfaces defined by the Renaissance software
backplane. A software element is constructed from subelements that may be linked together or may
be separate tasks or processes. Subelements within a software element may communicate among
themselves by means other than the backplane.

Software Subelement: A configuration-controlled component of one or more software
elements. Subelements may themselves have structure, but the subelement level is the lowest level
of concern for configuration of a system for a particular mission.

Standard: A set of principles, conventions, and/or programming interfaces established by either
the computer industry or the Renaissance team to govern the development of software. The X
Window System, OSF/Motif, and Common Desktop Environment (CDE) are all examples of
industry standards.

Subsystem: A standard decomposition of a system, encompassing those software elements
necessary to carry out a specific high-level functional area. For example, Spacecraft Operations
Monitoring and Mission Planning might be subsystems (these examples are for illustrative
purposes only, and do not imply a definitive decomposition of Renaissance systems).

User Services Transition Plan 1-2 August 29, 1994

Renaissance

System: A complete operational environment with clear boundaries and well-defined external
interfaces crossing these boundaries, such as the Mission Operations Center (MOC), Science
Operations Center (ASC) and spacecraft Integration and Test (I&T) systems.

Tailored: A tailored system, subsystem, element or subelement is one with some mission-
specific code added to a generic part in some standard way (e.g., linked in via well-defined
hooks).

User interface: A software element that falls within the sphere of the USWG. Thus, from the
point-of-view of the USWG, all software elements are either applications or user interfaces.

Widget: A software subelement that conforms to the X toolkit and Motif widget library standards
for implementing user interface components. Examples of widgets are XmPushButton and
XmTextField. Custom widgets created for the National Aeronautics and Space Administration
(NASA) environment are also discussed in this document.

User Services Transition Plan 1-3 August 29, 1994

Renaissance

Section 2. RENAISSANCE PROJECT SCHEDULES

The characteristics and schedule for each of the missions to be supported by the Renaissance
project are listed in the sections below. This information is used to set the stage for the overall user
services transition plan presented in Section 3.

2.1 ACE Schedule

The Advanced Composition Explorer (ACE) mission's primary science objective is to observe
particles of solar, interplanetary, interstellar, and galactic origins , spanning the energy range from
that of the solar wind (1 keV/nucleon) to galactic cosmic ray energies (several hundred
MeV/nucleon). ACE will also monitor the solar wind and provide real-time data to scientists.
There will be nine independent science instruments onboard the spacecraft.

ACE is scheduled for launch from the Cape Canaveral Air Force Station (CCAFS) aboard a Delta
II 7920 Expendable Launch Vehicle (ELV) in August 1997. The ACE spacecraft will be
constructed by the Johns Hopkins University (JHU) Applied Physics Laboratory (APL), who is
also under contract to GSFC Code 400 for the integration and test (I&T) of the ACE spacecraft and
science instruments.

ACE breaks from the traditional NASA approach where ground systems for mission operations,
science operations, and spacecraft I&T are usually developed independently of each other.
Instead, the ACE project will use the same open systems, distributed architecture for all three of
these ground system environments. The Transportable Payload Operations Control Center
(TPOCC) real-time control center software has already been selected for use in all three areas, and
other Renaissance software building blocks are also expected to be shared among these elements.
The current ACE implementation plan calls for releases of this shared "ACE generic" software as
early as the end of this calendar year to begin support of the I&T environment. This requirement to
support ongoing spacecraft testing from July 1995 until launch is a critical constraint on the
flexibility afforded to the Renaissance project in modifying existing building blocks for a new
Renaissance software architecture.

2.2 SMEX-4 SCHEDULE

The SMEX-4 project is the fourth spacecraft to be launched in the series of Small Explorer
(SMEX) missions. The first SMEX mission was SAMPEX, which was launched in July 1992.
The next two missions, FAST and SWAS, are both scheduled to be launched in 1995. All SMEX
missions are low-cost scientific projects with the spacecraft construction and integration and test
performed at GSFC. These projects emphasize mission-to-mission reuse of both spacecraft and
ground system hardware and software to realize their cost goals.

The science mission for SMEX-4 has not yet been selected, though it has been narrowed down to
either a TRACE/POEMS combination mission (designated TRAPEM) or WIRE. The
characteristics of the mission will differ depending on the science objective selected (e.g. TRAPEM
downlinks 450 Mbytes of science a day, WIRE only 95 Mbytes). It is known that the maximum
rate of spacecraft downlink during a tape recorder dump will exceed ACE's 76 Kbps by at least an
order of magnitude (1.8 Mbps for WIRE and 2.25 Mbps for TRAPEM). Thus, the Renaissance

User Services Transition Plan 2-1 August 29, 1994

Renaissance

control center built for SMEX-4 will need to have much greater performance capacity than the first
Renaissance control center built for ACE.

2.3 FUSE Schedule

The Far Ultraviolet Spectrograph Experiment (FUSE) project is currently scheduled for spacecraft
launch near the end of the year 2000. This project is currently in the very early stages of
development, with the start of Phase C/D scheduled for October 1995. This schedule affords
about a three year gap between ACE and FUSE. For this
reason the Renaissance project expects to have completed the majority of the transition efforts by
the time FUSE launches.

2.4 Future Spacecraft

Although no spacecraft missions have been assigned to Renaissance beyond FUSE, it is
anticipated that most or all of the upcoming missions supported by MO&DSD will be implemented
as Renaissance systems. One near term possibility for Renaissance is the LANDSAT-7 project,
though no final decision has been made on its disposition as a Renaissance project.

User Services Transition Plan 2-2 August 29, 1994

Renaissance

Section 3. USER SERVICES TRANSITION PLAN

This section of the document describes the overall transition approach for applying existing
MO&DSD user interface technology to the initial set of Renaissance projects that were described in
Section 2. The approach evolved from the need to impose standards and guidelines for
Renaissance user interface building blocks in order to meet the Renaissance user interface goals
documented in the Renaissance User Interface Implementation Guide. The following table
summarizes the planned phase-in of the standards and guidelines listed in the Renaissance User
Interface Implementation Guide across upcoming missions to be supported by the Renaissance
architecture. The subsections that follow describe the activities that will be undertaken in support
of each upcoming mission to make this phase-in possible.

STANDARDS &
GUIDELINES: ACE SMEX-4 FUSE

Future
Spacecraft

X11 R5 R5 R6 R6
Motif 1.2.3 1.2.3 2.x 2.x
Common Desktop Env basic integration partial integration full integration full integration
Ren Style Principles partial partial full full

Language C or C++ C or C++ New BB in C++ New BB in C++
POSIX identify isolate compliant compliant
Ren Develop Stds TBD TBD TBD TBD

Import/Export within BB within BB across BB across BB
Scripting individual methods individual methods partially integrated common method
Customizable by user partial partial full full
Decoupled from app change in key areas change in key areas decoupled decoupled
Layout/code separate? multiple layouts multiple layouts mostly standard standard layout
Custom widgets establish library establish library consistent library consistent library

Platforms HP HP HP, Sun? All ref platforms
COTS usage current COTS current COTS compliant COTS compliant COTS
Ren Interfaces partial partial full full
Documentation complete complete standard format standard format
Maturity some early releases some early releases more mature fully mature
On-line Help initial initial full full
Performance satisfies reqmts satisfies reqmnts abort & feedback abort & feedback
Portability tried tried < 1 month < 1 month
Support Availability basic basic enhanced routine
Verbatim reuse yes yes yes yes

Renaissance Missions versus Standards and Guidelines

User Services Transition Plan 3-1 August 29, 1994

Renaissance

3.1 ACE Goals

Since ACE is the first mission that will be supported by Renaissance, the USWG realizes that
goals for the ACE user environment should be limited to the highest priority activities. The
transition goals chosen for ACE are those that the working group felt would maximize the
consistency of the user environment at the least cost. The selected goals include:

- supporting basic integration of all building blocks with the Common Desktop
Environment (CDE) and providing online help, probably in the CDE format

- implementing the top priority user interface style principles selected by Renaissance

- decoupling the user interface software from underlying applications in one or two key
areas

- establishing and populating the Renaissance widget library

- beginning the transition to the Renaissance software backplane in key areas

- creating a common event format

Each of the ACE goals is described briefly in a paragraph below. Also note that the USWG
realizes that for ACE there may be some overlap in capabilities between user interface building
blocks. Over time, Renaissance will strive to eliminate this redundancy and provide only a single
building block that supports each functional capability. However, the schedule pressures from the
ACE project make this a goal that will not be satisfied in the near term.

The first ACE goal is basic integration of all building blocks with the Common Desktop
Environment (CDE). CDE is a project led by the UNIX workstation vendors to create a standard
user environment such as those existing for Macintosh users across all Macintosh PCs or with the
Windows environment for PC users. Announced in late 1993 by the Common Open Software
Environment (COSE) consortium of vendors, CDE builds on the most prevalent user interface
technology available for UNIX systems at this time: X Windows, OSF/Motif, Hewlett Packard's
Visual User Environment (VUE) and Sun's ToolTalk messaging protocol. To achieve basic CDE
compliance, all applications must comply with the Motif look-and-feel and must support their
installation into the CDE desktop environment. Initial support of the CDE help system is also a
requirement of basic integration. Since almost all of the Renaissance user interface building blocks
have not developed online help systems to date, the USWG is hoping to capitalize on this situation
and encourage all of the projects to develop their help systems with the CDE help package.

The Renaissance User Services Implementation Guide will contain a detailed section on user
interface style principles that will establish a Renaissance look-and-feel that is consistent with the
Motif standards. For ACE, each building block will need to make the highest priority changes in
this area. Examples could include shifting their time representations into a consistent ASCII string
format and following a naming convention for all window titles. The style principles are currently
scheduled for completion by early 1995.

Another area where the highest priority items will be tackled for ACE is the decoupling of user
interface software from underlying applications. This transition needs to be addressed for three of
the current user services building blocks and will have to be handled carefully for it probably

User Services Transition Plan 3-2 August 29, 1994

Renaissance

requires redesigns for two of the building blocks (GenSAA, and GTAS) and could introduce
performance and compatibility issues for the third (UIX).

Establishment of a Renaissance widget library support team and population of the library with
display components of general utility is a key activity for the long-term future of the Renaissance
user environment. Although the library will not be entirely consistent or complete in the ACE
timeframe, getting an early start on this activity is important. Rapid availability of widgets from
this library to the building block projects will help the user interfaces achieve the consistency goals.
A good example of this is the benefit that would be derived from a time input widget that could be
used by all building blocks to alleviate the current problem of a multiplicity of time representations.

An additional area where the highest priority items will be tackled for ACE is the transition to the
Renaissance software backplane. The highest priority software backplane item for the USWG is
establishment of a common system event message representation, logging, and distribution
scheme. A common events approach will allow the user to browse through logs showing all of the
activity within the ACE Mission Operations Center (MOC) regardless of the development legacy of
the software that generated the message. This item is absolutely critical so as not to impede the
smooth flow of operations activities in the ACE MOC. Initial work to define and document such a
common event scheme is currently underway between the user and data services working groups.

3.2 SMEX-4 GOALS

The SMEX-4 spacecraft launch is currently scheduled to occur in March 1988, just seven months
after the ACE launch. Because of the roughly parallel development schedules for the ACE and
SMEX-4 projects, the USWG does not anticipate any substantial differences between the
Renaissance building blocks to support the two missions. Thus, only one improvement has been
targeted for the SMEX-4 timeframe, namely achieving greater software portability by isolating all
POSIX system calls in separate libraries. If in the next three years the ACE and SMEX-4
schedules diverge, additional SMEX-4 transition goals will be set.

3.3 FUSE Goals

As the third Renaissance mission with launch over 5 years away, FUSE represents the first chance
to present a truly unified user environment. The USWG has thus set goals for the FUSE user
environment that reflect a relatively mature set of building blocks with most transition activities
completed. The selected goals include:

- full integration of all building blocks with the Common Desktop Environment (CDE) and
 comprehensive online help

- full implementation of user interface style principles selected by Renaissance

- POSIX compliance

- Motif-style data transfer between user interface building blocks

- increased support of user customization

- decoupling of the user interface software from underlying applications in all areas

- complete implementation of the Renaissance software backplane

User Services Transition Plan 3-3 August 29, 1994

Renaissance

- consistent and complete sets of Renaissance widgets and documentation

Since each of the USWG standards and guidelines are fully documented in the Renaissance User
Services Implementation Guide,, detailed information on these FUSE goals is not repeated here.

User Services Transition Plan 3-4 August 29, 1994

Renaissance

3.4 Long-Term Goals

Finally, the USWG has identified some long-term goals that may still be too ambitious to achieve
completely in time for support of the FUSE system. However, it is anticipated that substantial
progress will be achieved for FUSE in these areas even if these guidelines are not completely
satisfied. These long-term goals are as follows:

- a common capability for scripting and automating user activities that works
across multiple building blocks

- a standard representation for all displays so they can be freely interchanged
among building blocks

- proven portability between POSIX platforms including routine support for
Renaissance software on several Reference platforms

- well established support offices to assist system integrators using each building
block

Finally, the USWG has set a long-term goal of eliminating any overlap in capabilities between user
interface building blocks. Hopefully, by the turn of the century the Renaissance user interface
software will be a consistent suite of cooperating user interface building blocks each contributing a
set of unique functional capabilities.

User Services Transition Plan 3-5 August 29, 1994

Renaissance

Section 4. BUILDING BLOCK TRANSITION PLANS

A comparison of the current state of each Renaissance user services building block with the
USWG's standards and guidelines follows in the sections below. The first section describes the
current status and action plan for custom
widgets developed within Code 500 that can be shared among projects. The descriptions that
follow each analyze one of the user interface software elements that will be used in initial
Renaissance systems.

4.1 RENAISSANCE Widget Library

The USWG has identified user interface consistency as their principle goal so that the end user of a
Renaissance system is presented with an integrated user environment. Although all user interface
software elements are currently layered over the Motif widget library and conform to Motif style
principles, there is still much room for inconsistency when user interface components are
developed that fall outside of the Motif sphere. A perfect example of such a case is provided by the
requirement most of these building blocks share to allow user input of time information (e.g. start
and stop time of data replay). At least four different visual representations of time currently exist
among the user interface building blocks under consideration. Worse yet, two inconsistent custom
widgets have been created to make input of time information easier within their particular user
domain. At the least, this type of inconsistency is highly annoying to a Renaissance user; at the
worst it could place a spacecraft in danger if the user is unable to enter critical information because
of confusion in input syntax.

Realizing that such inconsistencies exist, the USWG has begun work to establish style principles
that will govern the format of information, including times. In addition, the USWG has identified
the need for a common set of user interface components that are specific to the NASA
environment. Many components of this type have already been written for the various projects
within MO&DSD. These software subelements have been implemented according to the X toolkit
industry standard that provides a stylized approach for developing user interface objects known as
widgets. The USWG is proposing that these widgets be consolidated into a single library
maintained by the Renaissance project. Thus, all Renaissance user interfaces could share a
common time input widget to alleviate the problem described above.

The following subsections describe the approach for transitioning existing MO&DSD widgets into
the realm of the Renaissance widget library. The first subsection compares the existing legacy
widgets with the user services standards and guidelines defined in the Renaissance User Interface
Implementation Guide. The remaining subsection describes the actions to be taken to create and
maintain this library and the schedule for completing these activities.

4.1.1 Mapping to Standards and Guidelines

This section presents the results of the comparison of the current Renaissance widget
implementations with the standards and guidelines presented in the Renaissance User Interface
Implementation Guide. The results are divided up into the four categories of standards and
guidelines defined in that document.

User Services Transition Plan 4-1 August 29, 1994

Renaissance

4.1.1.1 User Interface Standards

The status of Renaissance widget compliance with user interface standards is shown in the table
below. A detailed discussion follows the table.

STANDARD STATUS COMMENTS
X11 R5
Motif 1.2.2
Common Desktop Env n/a CDE integration is at the user interface process level
Ren Style Principles yes, so far Strive for compliance with Motif Style Guide

Current sources of custom widgets within Code 500 are TPOCC (around 20 widgets, mostly for
real-time data monitoring), GenSAA (with around five widgets representing objects on a spacecraft
schematic display), and MOPSS, PICS, and QAWS, which each contain 1 to 4 general utility
widgets for time input and other miscellaneous functions. All of these projects are currently based
on X11R5 and Motif 1.2. Thus, no problems are anticipated with the compatibility of the
contributed widgets with these commercial libraries. In addition, CDE compliance is a non-issue
since it applies to complete user interface applications only. All of these projects have always
worked toward OSF/Motif Style Guide compliance. It is anticipated that the widgets will thus have
a high degree of compatibility with the Renaissance style principles that will be based on this style
guide.

In summary, there is no significant transition for the Renaissance widget candidates to meet the
user interface standards. Some changes to conform to Renaissance style principles may be
required but are not anticipated to be major in nature.

4.4.1.2 Renaissance Standards

The status of Renaissance widget compliance with Renaissance standards is shown in the table
below. A detailed discussion follows the table.

STANDARD STATUS COMMENTS
Language C C is required to write Motif widgets
POSIX unsure Most API calls are to X and Motif libraries
Ren Develop Stds TBD

All Motif widget development must be performed in C according to the conventions of the X
toolkit. Thus, the candidate widgets will all be similar in implementation language and coding
style. POSIX system calls are not usually required to achieve the functionality of a widget.
POSIX compliance should be verified, however, as these widgets are received for insertion into
the library.

In summary, the only possible change anticipated for Renaissance widgets to conform to the
current Renaissance standards is in the area of POSIX compliance. In addition, future Renaissance
requirements to follow development standards could necessitate some additional changes to the
widget development and maintenance approaches.

User Services Transition Plan 4-2 August 29, 1994

Renaissance

4.4.1.3 User Interface Guidelines

The status of Renaissance widget compliance with user interface guidelines is shown in the table
below. A detailed discussion follows the table.

GUIDELINE STATUS COMMENTS
Import/Export partial Motif drag-and-drop implemented for some
Scripting n/a
Customizable by user yes Through UIL and resource files
Decoupled from app n/a
Layout/code separate? n/a
Custom widgets over 30 Widgets will be received by outside contribution

Many of the guidelines listed in this area do not apply to individual widgets. Thus, scripting,
decoupling, and separation of layout and code are not evaluated for the candidate widgets. Some
of the widgets do support the Motif
drag-and-drop protocol, a capability that will enhance data import and export within applications
that use these display components. Although many of the widgets support drag-and-drop through
inheritance from Motif text and label classes, the TPOCC mnemonic browser widget actually has a
built-in capability to transfer the entire complement of information on a telemetry point to an
interested Motif application. Some of the widgets could be enhanced to respond to this type of data
transfer, but that would be a long-term goal.

Customization is a capability that must be built in to any X toolkit widget through the standard
resource mechanism. This technique allows the widget's attributes to be defined at compile time,
during software configuration in a UIL or X resource file, or an run-time through command line
options.

Each of the widgets from the sources listed in 4.4.1.1 above will need to be contributed to the
widget library. Section 3 of the Renaissance User Services Implementation Guide lists the
complete requirements for such a software transfer to the Renaissance widget library support team.
Some of the products required to transfer a widget into the library are listed here:

- source code
- build dependencies
- UNIX man page documentation for the widget and its public procedures
- test suite (either sample UIL definitions or a test program)

In summary, the only real effort associated with this category will be the work required of the
library support team in accepting and integrating new widgets. This team will be responsible for
ensuring the quality and consistency of the
widget library and adding these display objects into any Renaissance tools that manipulate widgets
such as the UIL compiler and a drawing tool (Builder Xcessory perhaps).

4.4.1.4 Renaissance Guidelines

The status of Renaissance widget compliance with Renaissance guidelines is shown in the table
below. A detailed discussion follows the table.

User Services Transition Plan 4-3 August 29, 1994

Renaissance

GUIDELINE STATUS COMMENTS
Platforms varies See information on contributing projects
COTS Usage none
Ren Interfaces TBD
Documentation partial TPOCC and PACOR II widgets are documented
Maturity varies See information on contributing projects
On-line Help no
Performance yes
Portability varies See information on contributing projects
Support Availability no Will be established along with the library
Verbatim reuse yes

The candidate widgets do not all share the same level of compliance with the Renaissance
guidelines established by the USWG. Information on supported platforms, software maturity, and
portability will vary according to the contributing project. Similarly, the TPOCC and PACOR II
widgets have UNIX man pages written for them, the other widgets to be contributed do not. No
widgets are dependent on any COTS product other than X Windows and Motif themselves. None
are currently linked to an online help system. No problems with their performance or reusability is
anticipated. Finally, support for these widgets will become available as soon as the widget library
maintenance team is established.

In summary, the only real effort associated with this category will once again be linked to the
establishment of the library itself. The documentation and portability of the various widgets will
need to be reviewed for acceptability as they are contributed. In a similar vein the library support
team might want to publish the manual pages in a format so that they are accessible as part of the
Renaissance help system.

4.1.2 Action Plan

The action plan for the Renaissance widget library is perhaps the most difficult to ascertain since no
final decision has been made on how the funding to maintain the library will be obtained. The
initial assumptions of the USWG is that money from each successive Renaissance mission would
be contributed to the library maintenance team to fund their ongoing activities.

Another decision needs to be made concerning the organization that will oversee these activities.
The most cost effective solution is probably to grant the Mission Operations Division, Code 510,
with the maintenance of this library since they have extensive experience in widget library
maintenance as part of the TPOCC project. Maintenance costs should be substantially reduced,
maybe halved, if the work falls within this Center of Expertise (COE).

Finally a schedule should be established for the establishment of this library. There is an obvious
benefit to user interface development efforts if a wide range of widgets are available as soon as
possible. However, this benefit
should be weighed against the fact that Renaissance user interface style principles and complete
widget contribution procedures have not yet been established. Once in place, these products would
allow the widgets to be brought up to full Renaissance standards by the original implementation
team and then added to the library. This approach is probably more cost effective than requiring
the changes be made by the library maintenance team that did not author the original software.
With this in mind, a date of March 1995 could be set for establishment of the style principles and
contribution procedures. Completion of these items would allow all widget contributions to be
completed in calendar year 1995.

User Services Transition Plan 4-4 August 29, 1994

Renaissance

4.2 Transportable Payload Operations control Center (TPOCC)
Display Subsystem

The Transportable Payload Operations Control Center (TPOCC) display subsystem is a collection
of software processes that support real-time spacecraft command and control. For spacecraft
health and safety monitoring, this software utilizes a library of real-time display widgets that
support display of data as text, gauges, or plots. These widgets are grouped into a series of
display windows for a particular project that are stored in Motif's User Interface Language (UIL).
These multiple displays can all be accessed during a spacecraft contact in a multi-window
environment.

TPOCC's support of ground system and spacecraft command and control is through the TPOCC
System Test and Operations Language (TSTOL). The TPOCC display subsystem provides a
standard environment for working with this language that allows all operator input (manual or from
scripts called "procedures") to be logged and reviewed. An enhanced commanding environment,
known as the command panel, is also included with this display system The command panel
allows for rapid execution and monitoring of a pre-defined sequence of TSTOL procedures known
as a pass plan.

The following subsections describe the approach for transitioning the TPOCC display subsystem
for use with Renaissance. The first subsection compares the existing legacy building block with
the user services standards and guidelines defined in the Renaissance User Interface
Implementation Guide. The remaining subsections describe the actions to be taken to update the
TPOCC display subsystem and the schedule for completing these activities.

4.2.1 Mapping to Standards and Guidelines

This section presents the results of the comparison of the current TPOCC display subsystem
implementation with the standards and guidelines presented in the Renaissance User Interface
Implementation Guide. The results are divided up into the four categories of standards and
guidelines defined in that document.

4.2.1.1 User Interface Standards

The status of TPOCC display subsystem compliance with user interface standards is shown in the
table below. A detailed discussion follows the table.

STANDARD STATUS COMMENTS
X11 R5 Since Release 9
Motif 1.2.2 Since Release 9; considering upgrade to 1.2.4
Common Desktop Env partial: VUE Integrated with HP VUE since Release 6 (a principle CDE component)
Ren Style Principles yes, so far TPOCC User Interface Subgroup reviews for Motif Style compliance

The TPOCC display subsystem is a mature product that has been based on the X Window System
and OSF/Motif technologies since 1990. Release 9 of TPOCC used X11R5 and Motif 1.2; the
most recent TPOCC release available in July 1994 is Release 11, which utilizes these same X and
Motif versions. TPOCC projects have also been using the Hewlett Packard (HP) Visual User
Environment (VUE) desktop environment since late 1991. HP VUE is a critical piece of the
Common Desktop Environment (CDE) technology which will be used for Renaissance. The
TPOCC display software will certainly require significant changes for a move to full CDE
compliance; however, the fact that TPOCC already utilizes the HP VUE environment should ease

User Services Transition Plan 4-5 August 29, 1994

Renaissance

that transition somewhat. Finally, TPOCC has always had a user interface group that reviews new
user interface elements for consistency with the OSF/Motif Style Guide and other TPOCC user
interface elements. Thus, TPOCC should have a high degree of compliance with the Renaissance
style principles that are being based on this document.

In summary, TPOCC's only significant transition to meet the user interface standards requirements
is to achieve CDE compliance. Some changes to conform to Renaissance style principles may be
required but are not anticipated to be major in nature.

4.2.1.2 Renaissance Standards

The status of TPOCC display subsystem compliance with Renaissance standards is shown in the
table below. A detailed discussion follows the table.

STANDARD STATUS COMMENTS
Language C Studying transition to C++ for new TPOCC software elements
POSIX partial Have isolated platform-specific system calls in separate libraries
Ren Develop Stds TBD Development standards are still TBD

All TPOCC development is currently in C, though initial studies on migration to C++ have been
undertaken. No firm plans or timetable for such a migration exist at this time. TPOCC is currently
working to improve their POSIX compliance. The project has recently implemented POSIX
signals and has prototyped the conversion to POSIX shared memory access. Most operating
system dependencies within TPOCC are isolated in independent software libraries which also aids
in the portability of TPOCC's system calls.

In summary, the only change currently anticipated for TPOCC to conform to the current
Renaissance standards is a continuation of the effort to reach POSIX compliance. However, future
Renaissance requirements to follow development standards or utilize object-oriented techniques
could necessitate further changes to the TPOCC development approach.

4.2.1.3 User Interface Guidelines

The status of TPOCC display subsystem compliance with user interface guidelines is shown in the
table below. A detailed discussion follows the table.

GUIDELINE STATUS COMMENTS
Import/Export yes Library of routines to support Motif drag and drop
Scripting TSTOL Complete procedural language
Customizable by user partial Completely customizable by project; partially by user
Decoupled from app yes Data source objects allows widgets to be animated from any source
Layout/code separate? yes, UIL Have extended UIL compiler to include TPOCC widgets
Custom widgets about 20 Widget set will form foundation of Renaissance widget library

TPOCC has recently implemented a library to facilitate user transfer of data between applications
through the Motif standard drag-and-drop interface. This drag-and-drop interface has been
incorporated into several software processes within the TPOCC display subsystem. TPOCC
supports scripting of user activity with the TPOCC System Test and Operations Language, an
outgrowth of the STOL capability used successfully within the Mission Operations Division to
support dozens of spacecraft over the last 25 years. TPOCC currently allows extensive
customization by system integrators through the X Windows app-defaults file and UIL display

User Services Transition Plan 4-6 August 29, 1994

Renaissance

definitions. Customization by the user is only possible in the form of creating new display page
definitions with either the Builder Xcessory COTS layout tool or TPOCC's own page editor.

The TPOCC user interface software is typically isolated from the underlying applications through
the data server interface. The data server provides a stream of real-time data to interested clients
(like the display subsystem)
running on remote hosts. Furthermore, TPOCC has decoupled the real-time display widgets in the
TPOCC widget library from this interface by a move to data source objects about a year ago. This
object-oriented technique allow TPOCC's widgets to be animated based on data received by any
mechanism for which a subclass of the data source object has been created. This mechanism
could be the data server protocol, a file interface, a pipe, or by direct calls from an application.
TPOCC does maintain all layout information in the UIL language. These layouts include both the
system integrator's definition of the run-time interface and any user display definitions. Finally,
TPOCC has the largest collection of custom widgets within the MO&DSD, numbering around
twenty. For
this reason, it is likely that the TPOCC widget library will serve as the basis for the Renaissance
widget library (see Section 4.1).

In summary, TPOCC needs only to consider improvements in the area of end user customization to
meet the user interface guidelines. This effort is probably more of a long-term goal than a
necessity for ACE.

4.2.1.4 Renaissance Guidelines

The status of TPOCC display subsystem compliance with Renaissance standards is shown in the
table below. A detailed discussion follows the table.

GUIDELINE STATUS COMMENTS
Platforms HP, Solaris Also VxWorks for real-time embedded OS
Cost uses BX Support customization of BX to streamline for end users
Ren Interfaces TBD
Documentation yes Complete set of hardcopy manuals; online widget manual pages
Maturity Rel 11 Issue new release every 5 months
On-line Help no
Performance most cases No "work in progress" dialogs, but probably not needed
Portability < 2 weeks Ported to Ultrix, AIX, SGI, VMS
Support Availability yes SEAS task has support time budgeted in
Verbatim reuse yes Reused on over 10 control centers

TPOCC currently supported its software on the HP, Solaris, and VxWorks platforms. Ports to the
AIX, Ultrix, SGI, and VMS platforms have all been completed in the past, typically in two weeks
or less. TPOCC supports their custom widgets within the Builder Xcessory user interface design
tool, allowing both system integrators and end users to create new displays. This tool supports
several levels of use so that new users can see a much simpler set of display options. Changes to
support the Renaissance software backplane are currently undefined and could range from minor to
major depending upon the similarity with current TPOCC communication mechanisms. Also note
that the project routinely updates their Implementation Guide that contains complete information for
system integrators.

TPOCC has been considering an online help capability but it has not received a high enough
priority to be implemented up to this time. The TPOCC display subsystem may need a few
improvements in providing feedback for long operations, though the real-time processing
environment for which TPOCC is designed means that very few scenarios of this type exist.
TPOCC has funding for a support office and the display software meets all verbatim reuse

User Services Transition Plan 4-7 August 29, 1994

Renaissance

requirements listed in the implementation guide, as nine different control centers have used the
TPOCC display subsystem without modification by the mission.

In summary, TPOCC will require several changes to meet the Renaissance guidelines that have
been established. The addition of an online help capability and changes to support Renaissance
interfaces may be major changes.
An effort to enhance the performance feedback from the system is anticipated to be minor in nature.

4.2.2 Action Plan

The TPOCC project has an existing mechanism to handle requests for updates to TPOCC
technology. This Internal Configuration Change Request (ICCR) mechanism allows any user of
TPOCC technology to request a change and receive back the cost impact, a determination of
whether or not this has been accepted as a new generic software capability, and the schedule for
implementation. This process is fully documented in the TPOCC Project Support Plan. All
changes to the TPOCC display subsystem identified in this transition plan will be turned into
TPOCC ICCRs. Each ICCR will be costed and resources to implement the change will be
allocated if the ICCR is approved. The changes will be undertaken according to the schedule listed
below.

The TPOCC project delivers a major software release at least every 5 months. Releases do occur at
more frequent intervals as required to meet TPOCC project requirements. Because of the changing
needs of the TPOCC projects, the release schedule is usually only determined about 6 months
ahead. Thus, only a tentative schedule for future TPOCC releases can be given. This best estimate
is as follows:

TPOCC Release 11 July 1994
TPOCC Release 12 November 1994
TPOCC Release 13 April 1995
TPOCC Release 14 September 1995
TPOCC Release 15 February 1996

These are the dates TPOCC software is officially delivered; in most cases, the software is available
for integration by TPOCC projects two months earlier.

Capabilities for implementation have been allocated through TPOCC Release 12. Thus,
Renaissance requirements for ACE would need to be contained in Release 13 or later. A first
guess at the schedule for updates to the TPOCC display subsystem is given below:

TPOCC Release 13: Basic CDE integration

TPOCC Release 14: Online help facility
POSIX compliance
Updates for Renaissance Style Principles

TPOCC Release 15: Full CDE integration

User Services Transition Plan 4-8 August 29, 1994

Renaissance

4.3 Generic Spacecraft Analyst Assistant (GenSAA)

The Generic Spacecraft Analyst Assistant (GenSAA) is a tool that facilitates the development of
real-time expert systems that perform spacecraft monitoring and fault isolation functions. GenSAA
consists of a workbench to allow development of new expert systems and a set of run-time
software that performs the monitoring during a spacecraft contact. The software is divided into
three functional areas: the data manager/interface that obtains telemetry point from the TPOCC data
server, the expert system (based on the NASA CLIPS software), and the user interface. The files
generated by the workbench are used as input to the run-time components and specify the specific
operations to be performed for a particular mission.

The following subsections describe the approach for transitioning GenSAA for use with
Renaissance. The first subsection compares the existing legacy building block with the user
services standards and guidelines defined in the Renaissance User Interface Implementation Guide.
The remaining subsections describe the actions to be taken to update GenSAA and the schedule for
completing these activities.

4.3.1 Mapping to Standards and Guidelines

This section presents the results of the comparison of the current GenSAA implementation with the
standards and guidelines presented in the Renaissance User Interface Implementation Guide. The
results are divided up into the four categories of standards and guidelines defined in that document.

4.3.1.1 User Interface Standards

The status of GenSAA compliance with user interface standards is shown in the table below. A
detailed discussion follows the table.

STANDARD STATUS COMMENTS
X11 R5
Motif 1.2.2
Common Desktop Env no No file manager or desktop integrated to date
Ren Style Principles yes Strive for compliance with Motif Style Guide

The GenSAA software is currently based on X11R5 and Motif 1.2. Thus, no problems are
anticipated with these commercial libraries. However, GenSAA has not previously performed
integration with a desktop manager. This lack of experience may slow the process of integrating
GenSAA with CDE. GenSAA has always worked toward OSF/Motif Style Guide compliance. It
is anticipated that GenSAA with thus have a high degree of compatibility with the Renaissance
style principles that will be based on this style guide.

In summary, the one notable transition for GenSAA to meet the user interface standards
requirements is to integrate with CDE. Some changes to conform to Renaissance style principles
may be required but are not anticipated to be major in nature.

4.3.1.2 Renaissance Standards

The status of GenSAA compliance with Renaissance standards is shown in the table below. A
detailed discussion follows the table.

User Services Transition Plan 4-9 August 29, 1994

Renaissance

STANDARD STATUS COMMENTS
Language C, C++ C for CLIPS and widgets; otherwise C++
POSIX no No attempt to achieve compliance to date
Ren Develop Stds TBD

All GenSAA development is currently in C++, with C used only to interface with CLIPS and to
create custom widgets. The GenSAA project had no existing requirement for POSIX compliance
and thus will need to address this requirement from scratch.

In summary, the one significant change anticipated for GenSAA to conform to the current
Renaissance standards is in the area of POSIX compliance. In addition, future Renaissance
requirements to follow development standards could necessitate additional changes to the GenSAA
development approach.

4.3.1.3 User Interface Guidelines

The status of GenSAA compliance with user interface guidelines is shown in the table below. A
detailed discussion follows the table.

GUIDELINE STATUS COMMENTS
Import/Export not Motif Custom drag-and-drop implemented
Scripting no req't Prototyping interface to TSTOL
Customizable by user yes With workbench or TAE resource files
Decoupled from app yes Not as decoupled as original design
Layout/code separate? yes, ASCII Store layouts in GenSAA internal format
Custom widgets not portable Widgets developed by GenSAA are tied to special manager class.

GenSAA currently possesses requirements for user transfer of data between GenSAA elements
though a drag-and-drop interface. This transfer was implemented prior to Motif 1.2 and was thus
created in a custom fashion. GenSAA has no current requirement to support scripting. GenSAA
currently allows extensive customization by system integrators and end users through its own
workbench. Additional changes can be made by system integrators using the TAE workbench.

The GenSAA user interface component is only partially isolated from the data manger and expert
system components. A complete segmentation of GenSAA into these three components would be
more consistent with the Renaissance functional decomposition into user, application, and data
services. This decoupling would
be a major change and would occur after the ACE timeframe. GenSAA display layouts are
maintained in a custom ASCII format. GenSAA has created several custom widgets that currently
only function when parented under a special GenSAA manager widget.

In summary, short term changes to GenSAA would be reworking their custom widgets so they are
of general utility, and moving to a Motif standard approach for drag-and-drop. Long-term efforts
should consider separating the user interface and application into separate processes and looking at
UIL as a display definition storage mechanism. The near term costs in this area appear to be
moderate in nature.

User Services Transition Plan 4-10 August 29, 1994

Renaissance

4.3.1.4 Renaissance Guidelines

The status of GenSAA compliance with Renaissance guidelines is shown in the table below. A
detailed discussion follows the table.

GUIDELINE STATUS COMMENTS
Platforms HP, Sun SGI by spring 1995?
Cost TAE, CLIPS TAE used in workbench, not run-time
Ren Interfaces TBD
Documentation yes All necessary information in User's Guide
Maturity Rel 2
On-line Help partial User's Guide in Mosaic format now
Performance yes Use working dialogs in few required places
Portability been done Completed Sun to HP port
Support Availability yes Support office in place
Verbatim reuse yes

GenSAA is currently supported on the HP and Sun platforms. A port to the SGI platforms
scheduled for early 1995. GenSAA uses the CLIPS and TAE products developed by NASA (and
thus available at no cost). Changes to support the Renaissance software backplane are currently
undefined and could range from minor to major depending upon the similarity with current TPOCC
data server communication mechanisms. In any case, GenSAA will need to add the capability to
log system-level event messages. GenSAA possesses complete user
documentation for both system integrators and end users in their User's Guide.

GenSAA has not yet implemented an online help facility. Current efforts in this area have centered
on placing their user's guide into Mosaic format. If Mosaic is adopted, the issue of compatibility
with the CDE help system currently planned for Renaissance would need to be resolved. GenSAA
meets all performance, support, and reuse requirements listed in the implementation guide.

In summary, GenSAA will require several changes to meet the Renaissance guidelines that have
been established. Significant software changes may be needed to support new Renaissance
intertask communication mechanisms. A common online help approach for GenSAA and
Renaissance could also be a key factor in the level of change required to meet these guidelines.

4.3.2 Action Plan

The GenSAA project currently is under the configuration control of the Code 510 CCB. CCRs
may be submitted on GenSAA to allow interested parties to request a change and receive back a
response from the GenSAA project. All changes to GenSAA identified in this transition plan will
be turned into CCRs. Each CCR will be costed and resources to implement the change will be
allocated if the CCR is approved. The changes will be undertaken according to a TBD schedule.

User Services Transition Plan 4-11 August 29, 1994

Renaissance

4.4 SpaceCAM

SpaceCam is a computer graphics system that enhances spacecraft operations and mission planning
activities by giving analysts the ability to view, as if looking through a camera, a spacecraft as it
orbits the Earth. SpaceCam features multiple views looking at, and from, the spacecraft that
collectively provide an understanding of the position and orientation of the spacecraft relative to the
Earth, Sun, Moon, stars, other spacecraft, and regions of magnetic interference. Provided as well
are accurate fields of view from onboard instruments and antennas, the orientation of movable
antennas and solar arrays as reported by telemetry, and the orbit path of the spacecraft. The high
resolution color display has a "point and click", mouse-driven user interface that allows the user to
easily change viewing points and control rendering. Objects in the display can be shown either as
solid, translucent, or transparent (wire-frame outline) to get the best understanding of the
spacecraft's situation.

The following subsections describe the approach for transitioning the SpaceCam for use with
Renaissance. The first subsection compares the existing legacy building block with the user
services standards and guidelines defined in the Renaissance User Interface Implementation Guide.
The remaining subsections describe the actions to be taken to update SpaceCam and the schedule
for completing these activities.

4.4.1 Mapping to Standards and Guidelines

This section presents the results of the comparison of the current SpaceCam implementation with
the standards and guidelines presented in the Renaissance User Interface Implementation Guide.
The results are divided up into the four categories of standards and guidelines defined in that
document.

4.4.1.1 User Interface Standards

The status of SpaceCam compliance with user interface standards is shown in the table below. A
detailed discussion follows the table.

STANDARD STATUS COMMENTS
X11 R5
Motif 1.2.2
Common Desktop Env no
Ren Style Principles yes. so far Strive for Motif Style Guide compliance

The SpaceCam software is based on X11R5 and Motif 1.2.2 -- versions of these commercial user
interface technologies that are functionally equivalent to what has been chosen for the initial release
of CDE. However, SpaceCam has not yet integrated with a desktop manager product such as
CDE. SpaceCam will therefore need to build the icons, scripts, action definitions, and file types
for CDE integration from scratch. SpaceCam has always worked toward OSF/Motif Style Guide
compliance. It is anticipated that SpaceCam with thus have a high degree of compliance with the
Renaissance style principles that will be based on this style guide.

In summary, the one significant transition to meet the user interface standards requirements is to
achieve CDE compliance. Some changes to conform to Renaissance style principles may be
required but are not anticipated to be major in nature.

User Services Transition Plan 4-12 August 29, 1994

Renaissance

4.4.1.2 Renaissance Standards

The status of SpaceCam compliance with Renaissance standards is shown in the table below. A
detailed discussion follows the table.

STANDARD STATUS COMMENTS
Language C++ Also FORTRAN legacy code in ephemeris library
POSIX no Not checked yet
Ren Develop Stds TBD Will convert to Imake as part of port to HP platform

All SpaceCam development is currently in C++, with FORTRAN used only in a legacy software
library that support incorporation of ephemeris data. The SpaceCam project had no existing
requirement for POSIX compliance and thus will need to address this requirement from scratch.

In summary, the one significant change anticipated for GenSAA to conform to the current
Renaissance standards is in the area of POSIX compliance. In addition, future Renaissance
requirements to follow development standards could necessitate additional changes to the GenSAA
development approach.

4.4.1.3 User Interface Guidelines

The status of SpaceCam compliance with user interface guidelines is shown in the table below. A
detailed discussion follows the table.

GUIDELINE STATUS COMMENTS
Import/Export partial Publish results to TPOCC data server; screen snap to Postscript printer
Scripting user views Entire set of settings can be saved as a "user view" for later recall
Customizable by user res files Use standard X resource data base files
Decoupled from app yes
Layout/code separate? yes, UIL Inventor-supplied window frame layout not defined in UIL
Custom widgets no Use GenSAA widget wrapper; also TPOCC data source/server objects

SpaceCam does support data exchange with other applications by publishing some of its results to
a copy of the TPOCC data server process. They also support screen snaps to a Postscript printer.
However, no data import/export capability under user control is supported. SpaceCam has
powerful features to support customization and user automation. Besides customization with X
resource files, the SpaceCam user has the ability to tailor their three-dimensional views of the
spacecraft environment and save these customizations to a user view file. SpaceCam also meets all
guidelines for decoupling from the underlying application and maintenance of the screen layout
independent of the code. SpaceCam has not created any custom widgets, though they have
incorporated in the GenSAA widget wrapper software to simplify their use of TPOCC widgets for
data service in C++.

In the long term, SpaceCam may need to improve their support for Motif data transfer techniques
such as drag-and-drop or a clipboard. However, this appears to be the only change required to
conform to the user interface guidelines.

User Services Transition Plan 4-13 August 29, 1994

Renaissance

4.4.1.4 Renaissance Guidelines

The status of SpaceCam compliance with Renaissance guidelines is shown in the table below. A
detailed discussion follows the table.

GUIDELINE STATUS COMMENTS
Platforms SGI Port to HP by March 1995; require hardware Z buffer
Cost STK Also OpenInventor and OpenGL (beta test site for HP versions)
Ren Interfaces TBD Use TPOCC data server library routines
Documentation partial User's Guide is a chapter in XTE's, need an implementation guide
Maturity Prototype Release to GOES December 1994, to XTE March 1995
On-line Help no
Performance no
Portability untested
Support Availability partial Developers currently set up SpaceCam with each mission
Verbatim reuse yes Also have several C++ objects of general utility to Renaissance

SpaceCam is currently supported only on the SGI platform. A port to the HP platform will be
completed as soon as the OpenInventor and OpenGL products are made available on the HP. The
current schedule anticipates that this operational release to the XTE MOC on the HP platform will
occur in March 1995. An earlier SGI release may be made to the GOES project as early as
December 1994. Note that for performance reasons SpaceCam does require display hardware that
supports a hardware Z buffer.

Changes to support the Renaissance software backplane are currently undefined and could range
from minor to moderate depending upon the similarity with current TPOCC data server
communication mechanisms. SpaceCam will also need to plan for major changes to set up the
documentation and personnel to support use of this software product by mission development
teams acting as system integrators. This enhanced support will need to include online help for the
users and an implementation guide for system integrators. Currently, involvement from the
SpaceCam development team is required to set up this product for a new mission.

In summary, SpaceCam will require several significant changes to meet the Renaissance guidelines
that have been established. At a minimum, online help, documentation for system integrators, and
a support staff will need to be added.

4.4.2 Action Plan

The action plan and schedule for implementation of the Renaissance transition items for SpaceCam
is TBD.

User Services Transition Plan 4-14 August 29, 1994

Renaissance

4.5 Generic Trend Analysis System (GTAS)

The Generic Trending and Analysis System, GTAS, provides a generic, user-friendly tool for
assessing performance over the life of a spacecraft. There are six major features to the system: a
telemetry and trending database, statistical calculations, mathematical manipulations of the data,
graphical plots, relational telemetry expressions, and reports. GTAS provides the user easy access
to the spacecraft data. It archives thirty days of telemetry, an extended duration of statistics, orbital
information, and other miscellaneous data.

The following subsections describe the approach for transitioning GTAS for use with Renaissance.
The first subsection compares the existing legacy building block with the user services standards
and guidelines defined in the Renaissance User Interface Implementation Guide. The remaining
subsections describe the actions to be taken to update GTAS and the schedule for completing these
activities.

4.5.1 Mapping to Standards and Guidelines

This section presents the results of the comparison of the current GTAS implementation with the
standards and guidelines presented in the Renaissance User Interface Implementation Guide. The
results are divided up into the four categories of standards and guidelines defined in that document.

4.5.1.1 User Interface Standards

The status of GTAS compliance with user interface standards is shown in the table below. A
detailed discussion follows the table.

STANDARD STATUS COMMENTS
X11 R5
Motif 1.2.2
Common Desktop Env partial Currently uses HP VUE (a principle CDE component)
Ren Style Principles yes, so far Compliant with the OSF/Motif Style Guide

The GTAS software is currently based on X11R5 and Motif 1.2. Thus, no problems are
anticipated with these commercial libraries. GTAS has already performed integration with HP
VUE. This previous work should give them a headstart when integrating with CDE. GTAS has
always worked toward OSF/Motif Style Guide compliance. It is anticipated that GTAS with thus
have a high degree of compatibility with the Renaissance style principles that will be based on this
style guide.

In summary, the one notable transition for GTAS to meet the user interface standards requirements
is to integrate with CDE. Some changes to conform to Renaissance style principles may be
required but are not anticipated to be major in nature.

4.5.1.2 Renaissance Standards

The status of GTAS compliance with Renaissance standards is shown in the table below. A
detailed discussion follows the table.

User Services Transition Plan 4-15 August 29, 1994

Renaissance

STANDARD STATUS COMMENTS
Language C Also SQL database interfaces
POSIX partial IPC compliant
Ren Develop Stds TBD

All GTAS development is currently in C, with no plans in place for migration to C++. GTAS has
had a design goal of POSIX compliance but has not verified this fact to date.

In summary, the only change currently anticipated for GTAS to conform to the current Renaissance
standards is a continuation of the effort to reach POSIX compliance. However, future Renaissance
requirements to follow development standards or utilize object-oriented techniques could
necessitate further changes to the GTAS development approach.

4.5.1.3 User Interface Guidelines

The status of GTAS compliance with user interface guidelines is shown in the table below. A
detailed discussion follows the table.

GUIDELINE STATUS COMMENTS
Import/Export partial Supports Postscript and archived data
Scripting yes Request file with editor
Customizable by user yes Also, speed button assignment
Decoupled from app partial User interface not decoupled from trend analysis application
Layout/code separate? yes UIL
Custom widgets no

GTAS currently possesses requirements for user transfer of data to a data base archive and
Postscript printers. No drag-and-drop or clipboard interface is supported. GTAS currently allows
customization by system integrators through the X Windows app-defaults file. Customization by
the user is possible through the assignment of speed buttons.

The GTAS user interface component is not isolated from the trend analysis and data base
components of this system. A complete segmentation of GTAS into these three components would
be more consistent with the Renaissance functional decomposition into user, application, and data
services. This decoupling would
be a major change and would occur after the ACE timeframe. GTAS display layouts are
maintained in UIL format. GTAS has not created any custom widgets.

In summary, no substantial short term changes to GTAS are identified for this area. Long-term
efforts should consider separating the user interface and application into separate processes and
looking at drag-and-drop data interchange with other applications.

4.5.1.4 Renaissance Guidelines

The status of GTAS compliance with Renaissance guidelines is shown in the table below. A
detailed discussion follows the table.

User Services Transition Plan 4-16 August 29, 1994

Renaissance

GUIDELINE STATUS COMMENTS
Platforms HP HP/UX version 9.0
Cost PV/Wave PV/Wave used for plotting
Ren Interfaces TBD Currently supports TPOCC Telemetry Subset Files
Documentation yes
Maturity Ver 1.08 In acceptance testing with frozen software
On-line Help partial Partial implementation
Performance no
Portability not tested No resources to support GTAS on multiple platforms
Support Availability yes
Verbatim reuse yes

GTAS is currently being developed on HP RISC processors running the HP/UX 9.0 operating
system. No ports to other platforms have been attempted to date and work of this nature is beyond
GTAS's current funding. PV/Wave is used for plotting and the ORACLE data base is used in
Release 1 to store telemetry information. GTAS is currently investigating a move to a simple flat
file data base instead of Oracle.

Changes required to GTAS interfaces because of the Renaissance software backplane are not
expected to be major. GTAS already supports the TPOCC event logging interface. Furthermore,
the primary interface with the rest of the MOC system is through telemetry subset files, not an
interprocess communication mechanism.

GTAS already supports most TPOCC missions, so availability of support and documentation
should not be a problem. Although online help has been partially implemented, more funding is
needed to complete this work and to adopt the Renaissance help format. GTAS also will need to
look at the performance feedback requirements for they are not fully compliant with this guideline.

In summary, GTAS will require several significant changes to meet the Renaissance guidelines that
have been established. Online help, support for other reference platforms, and performance
feedback will need to be added. Fortunately, the change to the new Renaissance intertask
communication mechanisms should not have a significant effect on this building block.

4.5.2 Action Plan

The first release of GTAS was for support of the FAST mission. The current software
development is to support all upcoming TPOCC missions. As the system is designed for generic
trending and analysis, it will be easily ported to other missions and environments.

The current implementation release schedule is as follows:

August 1994 - Release 2 Interactive plots, TOSA integration, ingest/retrieval
performance enhancements

March 1995 - Release 3 FDF/Formats interface, complete TOSA integration,
enhanced reporting capabilities, performance
enhancements

User Services Transition Plan 4-17 August 29, 1994

Renaissance

August 1995 - Release 4 Enhanced plotting capabilities, performance
enhancements

As state above, it has been determined that some Renaissance SMEX/ACE funding will be
necessary to provide a fully Renaissance compliant GTAS system.

User Services Transition Plan 4-18 August 29, 1994

Renaissance

4.6 MISSION OPERATIONS PLANNING AND SCHEDULING
SOFTWARE (MOPSS) GRAPHICAL USER INTERFACE

The Mission Operations Planning and Scheduling Software (MOPSS) is a multi-user system
utilized by both scientists and flight operations teams to concurrently plan and schedule spacecraft
and ground system activities and resources. A powerful graphical user interface enables a user to
view and manipulate schedule data. The adaptable architecture of MOPSS enables easy integration
of tools and models to meet new system requirements. Data can be directly ingested from models
or from the user interface, or indirectly from flat files in the format produced by existing systems.

The heart of the system is a flexible schedule manager component based on the Oracle 7 RDBMS.
This schedule manager supports viewing and editing of schedule data concurrently by multiple
users. Multiple independent schedules can be managed simultaneously. External processes can be
invoked directly from the graphical display, or based on time. User privileges and authorization
prevent breaching of data security and integrity. User-defined constraint checks ensure that
generated schedules do not violate resource limitations.

The graphical user interface provides the user with visual access to any data maintained by the
schedule manager. A choice of user-configurable display formats, such as timeline, calendar, and
tabular representations, are envisioned. With the timeline representation, the user may visualize an
entire schedule or any portion thereof. The user may navigate through the schedule using the
zooming and scrolling features. The tabular display presents the schedule data in a textual form.
The calendar representation displays planning data in a familiar wall-calendar format.

The following subsections describe the approach for transitioning the MOPSS graphical user
interface to Renaissance compliance. The first subsection compares the MOPSS building block as
currently planned with the user services standards and guidelines defined in the Renaissance User
Interface Implementation Guide. The remaining subsections describe the actions to be taken to
update the MOPSS graphical user interface and the schedule for completing these activities.

4.6.1 Mapping to Standards and Guidelines

This section presents the results of the comparison of the MOPSS graphical user interface
implementation with the standards and guidelines presented in the Renaissance User Interface
Implementation Guide. The results are divided up into the four categories of standards and
guidelines defined in that document.

4.6.1.1 User Interface Standards

The status of the MOPSS user interface compliance with user interface standards is shown in the
table below. A detailed discussion follows the table.

STANDARD STATUS COMMENTS
X11 R5
Motif 1.2.2 Transition to 1.2.3 with preliminary CDE integration
Common Desktop Env partial Integrated with HP VUE (a principle CDE component)
Ren Style Principles TBD Style principles are still TBD

MOPSS is currently in development of Release 1 for the XTE and TRMM missions. MOPSS has
inherited a strong legacy from TPOCC. Since MOPSS is currently planned as a subsystem of the
MOC, MOPSS will continue to maintain compatibility with TPOCC.

User Services Transition Plan 4-19 August 29, 1994

Renaissance

Motif 1.2.3 has been chosen as the initial version for CDE. MOPSS will upgrade to 1.2.3 and
CDE during the same release. MOPSS is currently at X11R5. MOPSS is currently compliant with
the OSF/Motif Style Guide.

In summary, the one notable transition for MOPSS to meet the user interface standards
requirements is to integrate with CDE. Some changes to conform to Renaissance style principles
may be required but are not anticipated to be major in nature.

4.6.1.2 Renaissance Standards

The status of the MOPSS user interface compliance with Renaissance standards is shown in the
table below. A detailed discussion follows the table.

STANDARD STATUS COMMENTS
Language C, C++ Approximately 12k lines of inherited code are currently in C
POSIX partial System calls currently not supported by POSIX 1003.4 are utilized
Ren Develop Stds TBD Development standards are still TBD

MOPSS has inherited a significant amount of legacy code from the User Planning System (UPS).
The UPS legacy code performs the low-level graphical timeline manipulation, and interfaces with
X11 and Motif. This portion of MOPSS, known as the Graphical Timeline Viewer, will be
maintained in C. All new code implemented in the Graphical Timeline Viewer will also be
implemented in C.

Four higher-level segments make up the Graphical Timeline user interface. These include the
Session Manager, Display Manager, Event Manager and Graphical Timeline Viewer Manager.
These segments have been partitioned into objects and implemented in C++. The C/C++ interface
has been isolated between the Graphical Timeline Viewer and the Graphical Timeline Viewer
Manager. All new code implemented in these segments will continue to be in C++.

In summary, the one significant change anticipated for MOPSS to conform to the current
Renaissance standards is in the area of POSIX compliance. In addition, future Renaissance
requirements to follow development standards could necessitate additional changes to the MOPSS
development approach.

4.6.1.3 User Interface Guidelines

The status of the MOPSS user interface compliance with user interface guidelines is shown in the
table below. A detailed discussion follows the table.

GUIDELINE STATUS COMMENTS
Import/Export yes where appropriate
Scripting yes Standard Schedule Representation File syntax
Customizable by user yes where appropriate
Decoupled from app yes database client communicates with server via SQL*Net
Layout/code separate? yes UIL/Resource files
Custom widgets yes 3 currently developed, with a potential of approximately 10

MOPSS supports import/export of data from/to other user interface elements through a Motif-
approved transfer technique where appropriate. "Drag and drop" are used extensively throughout

User Services Transition Plan 4-20 August 29, 1994

Renaissance

the graphical timeline and configuration panels. Printing of the timeline to a Postscript laser printer
is also supported.

MOPSS provides a user scripting capability known as the Standard Schedule Representation File.
The syntax of the language provides the user with the capability to duplicate any action that can be
performed from the timeline. For enhanced capability, the user has the ability to invoke UNIX-
level system scripts.

Because MOPSS is a generic mission planning and scheduling system, the user has the ability to
define as many graphical timeline display configurations as are necessary. Display configuration
can be either PUBLIC or private. They are created on-the-fly using the Display Configuration
Editor, which is available as a pull-down from the MOPSS main panel.

The Graphical Timeline Viewer user interface building block is decoupled from that of the Data
Manager application building block. A strictly controlled set of access routines are maintained to
provide the interface to the Data Manager application. The Data Manager application is
implemented using Oracle Relational Data Base Management Software (RDBMS). Access between
the access routines and Oracle is via SQL*Net.

The layouts for the pull-down menus are maintained using Builder Xcessory. Builder Xcessory
stores the resulting menu structure in UIL. This allows the user interface layouts for the pull-down
menus to be maintained independently of the underlying user interface software.

In summary, MOPSS will need to contribute its widgets to the Renaissance widget library.
However, this appears to be the only change required to conform to the user interface guidelines.

4.6.1.4 Renaissance Guidelines

The status of the MOPSS user interface compliance with Renaissance guidelines is shown in the
table below. A detailed discussion follows the table.

GUIDELINE STATUS COMMENTS
Platforms HP, DEC HP 9000/715
Cost yes Oracle RDBMS used for storing schedule data
Ren Interfaces TBD TBD
Documentation Release 1

Release 1
Release 1
Release 3

MOPSS System Requirements Specification (SRS)
MOPSS Capabilities Document
MOPSS Users Guide
MOPSS Implementation Guide

Maturity Prototype First release scheduled for December 1994
On-line Help planned Utilize CDE help facility
Performance planned Planned for MOPSS Release 3
Portability <1 month Ports easily to DEC
Support Availability yes MOPSS Working Group supports MOPSS (see below)
Verbatim reuse yes No coding changes required.

The MOPSS user interface software is currently being developed for an HP 9000/715/80 with
64Mb, or more, of memory and running under HP/UX 9.0. The user interface software was
originally developed on a DEC Workstation 5000. Since being originally ported from the DEC,
the software has been successfully ported back to the DEC for another application. Although
MOPSS is currently in development for Release 1, a large component of the user interface software
was reused from UPS.

User Services Transition Plan 4-21 August 29, 1994

Renaissance

MOPSS is a generic mission planning and scheduling system. In order to support multiple
missions, MOPSS requires no coding changes to store new kinds of scheduled events. MOPSS
is currently configured to accept PSAT, maneuver and UAV data from FDF, USM and SDN data
from UPS, and FOT planning data from the MOC off-line. MOPSS can export scheduled data
through the Standard Schedule Representation File or into an Activity Plan. New scheduling
engines can be easily adapted to MOPSS through the Standard Schedule Representation File or
interface directly with the database using a standard set of access procedures. Where necessary,
mission specific models can be written as Oracle PL/SQL package procedures. Access to the
database is strictly maintained through a well-defined set of access procedures.

In summary, MOPSS will require several moderate-level enhancements to meet the Renaissance
guidelines that have been established. The addition of an online help capability and performance
feedback changes are planned but not until 1996. Effort will also be required to move to the
Renaissance software backplane mechanisms but the severity of such a change can not be
determined at this time.

User Services Transition Plan 4-22 August 29, 1994

Renaissance

4.6.2. Action Plan

MOPSS has an existing mechanism to handle requests for updates to MOPSS technology. The
MOPSS Working Group (MOPSSWG) was established by GSFC Code 510 and its SEAS
contractors to ensure technical continuity, communications, and proper integration of MOPSS
components. It is the responsibility of the MOPSSWG to oversee MOPSS development, and
evaluate new requirements, modifications, changes, DRs, etc. The MOPSSWG will be the
controlling board for MOPSS documentation, reporting to the MOD CCB. This process is
documented in the MOPSS Project Support Plan.

MOPSS is currently scheduled to deliver major software releases in support of the XTE and
TRMM MOCs. Additional requirements are currently being developed to support the ACE MOC.

MOPSS Release 1 will be incorporated into XTE Release 2, then six months later into TRMM
Release 1. MOPSS Release 2 will be incorporated into XTE Release 3 and TRMM Release 2.
MOPSS Release 3 is currently envisioned to support TRMM Release 3, and will eventually be
retrofitted into the XTE MOC after launch of the XTE spacecraft. Releases which support the ACE
mission have not been planned at this time, however it is anticipated that MOPSS Release 3 will
also support ACE MOC Release 1. MOPSS Release 4 has been planned to support the ACE MOC
Launch Release (Release 2) delivery. A fifth release of MOPSS is planned for ACE in the first
quarter or 1997.

MOPSS Release 1 December 1994
MOPSS Release 2 April 1995
MOPSS Release 3 March 1996
MOPSS Release 4 October 1996
MOPSS Release 5 March 1997

These are the dates the MOPSS software is officially delivered; in most cases, the software is
available for integration by the MOCs two months earlier.

Capabilities for implementation have been allocated through MOPSS Release 2. Requirements for
the TRMM MOC have been defined for MOPSS Release 3, but not yet for ACE. Renaissance
requirements for ACE would need to be contained in Release 3 or later.

MOPSS Release 3: On-line help facility
POSIX compliance
Basic CDE integration
Motif 1.2.3
User feedback

MOPSS Release 4: Full CDE integration

User Services Transition Plan 4-23 August 29, 1994

Renaissance

4.7 User Interface and Executive (UIX)

The User Interface and Executive (UIX) is a configurable user interface designed to support
applications executing in the Unix workstation environment within the Flight Dynamics Distributed
System (FDDS). UIX gives FORTRAN, C and Ada developers the ability to create an X Window
GUI without requiring X programming knowledge or the use of a GUI builder. A secondary goal
of UIX is to reduce training costs for operations personnel by standardizing the types of displays
in use.

The following subsections describe the approach for transitioning UIX for use with Renaissance.
The first subsection compares the existing legacy building block with the user services standards
and guidelines defined in the Renaissance User Interface Implementation Guide. The remaining
subsections describe the actions to be taken to update UIX and the schedule for completing these
activities.

4.7.1 Mapping to Standards and Guidelines

This section presents the results of the comparison of the current UIX implementation with the
standards and guidelines presented in the Renaissance User Interface Implementation Guide. The
results are divided up into the four categories of standards and guidelines defined in that document.

4.7.1.1 User Interface Standards

The status of UIX compliance with user interface standards is shown in the table below. A
detailed discussion follows the table.

STANDARD STATUS COMMENTS
X11 R4 Moving to X11R5 by January 1995
Motif 1.1 Moving to Motif 1.2 by January 1995
Common Desktop Env partial Already integrated with SCO desktop environment
Ren Style Principles yes, so far Motif compliant

The UIX software is currently based on X11R4 and Motif 1.1. The existing UIX development
schedule calls for an upgrade by January 1995 to X11R5 and Motif 1.2 -- the same versions of
these commercial user interface technologies that have been chosen for the initial release of CDE.
Also, UIX has already performed
integration with the desktop manager included with SCO UNIX. This previous work should give
them a headstart when integrating with CDE. UIX has always worked toward OSF/Motif Style
Guide compliance. It is anticipated that UIX with thus have a high degree of compatibility with the
Renaissance style principles that
will be based on this style guide.

In summary, the one notable transition for UIX to meet the user interface standards requirements is
to integrate with CDE. Some changes to conform to Renaissance style principles may be required
but are not anticipated to be major in nature.

4.7.1.2 Renaissance Standards

User Services Transition Plan 4-24 August 29, 1994

Renaissance

The status of UIX compliance with Renaissance standards is shown in the table below. A detailed
discussion follows the table.

STANDARD STATUS COMMENTS
Language C Object-oriented design
POSIX full Completely compliant
Ren Develop Stds TBD

All UIX development is currently in C, though the system is designed and implemented using
object-oriented techniques. Future migration to C++ will be considered in the Flight Dynamics
Division (FDD) selects this language as the basis for future implementations. UIX does have an
existing requirement for POSIX compliance and has been able to meet this requirement in all cases
to date.

In summary, no significant changes are currently anticipated for UIX to conform to the current
Renaissance standards. However, future Renaissance requirements to follow development
standards or utilize object-oriented techniques could necessitate changes to the UIX development
approach.

4.7.1.3 User Interface Guidelines

The status of UIX compliance with user interface guidelines is shown in the table below. A
detailed discussion follows the table.

GUIDELINE STATUS COMMENTS
Import/Export planned Plan to use Motif clipboard for text transfers
Scripting session mgr Session manager allows sequencing at the application level
Customizable by user partial Through X resource data base; long-term plan is for GUI interface
Decoupled from app partial Separated into different libraries but run as part of same process
Layout/code separate? yes, ASCII Store layouts in UIX internal format
Custom widgets none May want to utilize X-Y plot in Renaissance library

UIX currently possesses requirements for user transfer of data with other applications through a
cut and paste to a clipboard. This technique is a Motif-approved method, though a drag-and-drop
interface will be evaluated after
UIX migrates to Motif 1.2. UIX supports sequencing of programs with the session manager but
can not currently support sequences of user directives to a single application. UIX currently
allows extensive customization by system integrators through the X Windows app-defaults file and
UIX display definitions. A graphical interface for user customization is planned for the future.

The UIX user interface software is isolated from the underlying application in separate libraries but
does not run as a standalone process. A design using remote procedure calls (RPCs) to further
isolate these functions in separate processes was considered over a year ago. It was rejected at the
time due to performance concerns and the lack of ADA or FORTRAN bindings for the RPC calls.
Such an approach will be examined again to see if these concerns can be alleviated and the redesign
achieved at moderate cost. This segmentation would be more consistent with the approaches put
forward in the current definition of the Renaissance software backplane.

UIX display layouts are maintained in a custom ASCII format. UIX has not created any custom
widgets though the project does use the XbaeMatrix widget from the public domain and is
interested in evaluating the TPOCC X-Y plot widget to implement some specialized plotting
requirements.

User Services Transition Plan 4-25 August 29, 1994

Renaissance

In summary, UIX should strongly consider separating the user interface and application into
separate processes in the near term. Longer term work could focus on drag-and-drop capabilities,
scripting of individual actions within a program, and looking at UIL as a display definition storage
mechanism. The near term costs in this area appear to be moderate in nature.

4.7.1.4 Renaissance Guidelines

The status of UIX compliance with Renaissance guidelines is shown in the table below. A detailed
discussion follows the table.

GUIDELINE STATUS COMMENTS
Platforms Sun,SCO,HP SCO currently: Sun and HP by January 1995
COTS Usage CodeBase Have CodeBase source and also use FDF NCSS library
Ren Interfaces TBD
Documentation yes Programmer's Reference document is planned
Maturity Prototype Release 1 by January 1995
On-line Help Mosaic? Investigating Mosaic as an on-line help package
Performance yes Working dialogs included
Portability tested Prototype was ported to several platforms
Support Availability partial Have not planned for support outside of Code 550
Verbatim reuse yes

UIX is currently supported on the SCO UNIX platform. A port to the SGI platforms was
completed with a UIX prototype; the Sun and HP platforms will both be fully supported by early
1995. UIX uses the CodeBase API to provide relational data base management; however, the
FDD Center of Expertise (COE) has the source
code for this product and there is no embedded cost for this product. Changes to support the
Renaissance software backplane are currently undefined and could range from minor to major
depending upon the similarity with current UIX communication mechanisms. Also note that UIX
plans a programmer's reference document (a preliminary version is available at this time).

UIX hopes to support an online help capability by early 1995. Current efforts in this area center
on investigating the hypertext and editing capabilities of Mosaic. Mosaic is an attractive alternative
since it meets the FDD requirement for all documents to be maintained and distributed in electronic
format. If Mosaic is adopted, the issue of compatibility with the CDE help system currently
planned for Renaissance would need to be resolved. UIX meets all performance and reuse
requirements listed in the implementation guide. Although support for the use of UIX is being
provided to Code 550 projects, support of outside users has not been considered prior to this time.

In summary, UIX will require several changes to meet the Renaissance guidelines that have been
established. A support staff for users outside the FDD will need to be added and significant
software changes may be needed to support new Renaissance intertask communication
mechanisms. A common online help approach for UIX and Renaissance could also be a key factor
in the level of change required to meet these guidelines.

4.7.2 Action Plan

The UIX project has an existing software change request (SCR) mechanism to handle requests for
updates to UIX capabilities. This SCR mechanism allows interested parties to request a change
and receive back a response from the UIX project. All changes to UIX identified in this transition
plan will be turned into SCRs. Each SCR will be costed and resources to implement the change

User Services Transition Plan 4-26 August 29, 1994

Renaissance

will be allocated if the SCR is approved. The changes will be undertaken according to a TBD
schedule.

User Services Transition Plan 4-27 August 29, 1994

Renaissance

4.8 PACOR II Information and Control Subsystem (PICS)

The PACOR II Information and Control Subsystem (PICS) is responsible for providing the
computer-human interface for control, monitoring, and information retrieval for the PACOR II
software, Major functions of the PICS include acquisition scheduling, resource allocation, system
monitoring, data retention, and reporting.

The following subsections describe the approach for transitioning PICS for use with Renaissance.
The first subsection compares the existing legacy building block with the user services standards
and guidelines defined in the Renaissance User Interface Implementation Guide. The remaining
subsections describe the actions to be taken to update PICS and the schedule for completing these
activities.

4.8.1 Mapping to Standards and Guidelines

This section presents the results of the comparison of the current PICS implementation with the
standards and guidelines presented in the Renaissance User Interface Implementation Guide. The
results are divided up into the four categories of standards and guidelines defined in that document.

4.8.1.1 User Interface Standards

The status of PICS compliance with user interface standards is shown in the table below. A
detailed discussion follows the table.

STANDARD STATUS COMMENTS
X11 R5
Motif 1.2.3
Common Desktop Env no No file manager or desktop integrated to date
Ren Style Principles yes, so far Strive for compliance with Motif Style Guide and PACOR II guidelines

The PICS CHI software is based on X11R5 and Motif 1.2.3 -- the same versions of these
commercial user interface technology that have been chosen for the initial release of CDE.
However, the PACOR II user environment has not yet included a desktop manager product such
as CDE. PICS will therefore need to build the icons, scripts, action definitions, and file types for
CDE integration from scratch. PACOR II has always worked toward OSF/Motif Style Guide
compliance and has followed an internal set of style principles. It is anticipated that PICS with
thus have a high degree of compliance with the Renaissance style principles
that will be based on such principles.

In summary, the one significant transition to meet the user interface standards requirements is to
achieve CDE compliance. Some changes to conform to Renaissance style principles may be
required but are not anticipated to be major in nature.

4.8.1.2 Renaissance Standards

The status of PICS compliance with Renaissance standards is shown in the table below. A detailed
discussion follows the table.

User Services Transition Plan 4-28 August 29, 1994

Renaissance

STANDARD STATUS COMMENTS
Language C Limited experience with object-oriented technologies
POSIX isolated BSD socket usage isolated in library; otherwise, POSIX compliant
Ren Develop Stds TBD Development standards are still TBD

All PICS development is currently in C. No plans have been made to consider an object-oriented
programming environment for the future. If Renaissance requires such an approach, PACOR
personnel would require training and lead time to convert to the new methodology. PACOR II
does have an existing requirement for
POSIX compliance. All system calls that are not defined within the POSIX specifications must be
isolated in separate libraries. This isolation has been achieved by the Berkeley socket library calls
used in PICS.

In summary, no significant changes are currently anticipated for PICS to conform to the current
Renaissance standards. However, future Renaissance requirements to follow development
standards or utilize object-oriented techniques could necessitate substantial change to the PICS
development approach.

4.8.1.3 User Interface Guidelines

The status of PICS compliance with user interface guidelines is shown in the table below. A
detailed discussion follows the table.

GUIDELINE STATUS COMMENTS
Import/Export no req't
Scripting no req't
Customizable by user partial Only supported through X windows app-defaults files
Decoupled from app yes Socket interface for control; SQL interface to get data
Layout/code separate? yes, UIL Builder Xcessory used to maintain UIL
Custom widgets 7 Half of the widgets are standalone already; all have man pages written

PICS currently possesses no requirements for user transfer of data with other applications or
scripting of user operations. Data exchange with other processes is accomplished through SQL
calls to the Oracle data base. PICS
currently allows customization through the X Windows app-defaults file in the user's home
directory, although this capability is not currently heavily used. No menu or graphical interface for
user customization is currently supported. The PICS user interface software is clearly decoupled
from the underlying application and the layout is also maintained separately as UIL. PICS uses the
WML facility to augment the UIL compiler with information on their custom widgets. Half of the
7 existing PICS widgets are close to ready to be contributed to a Renaissance widget library; the
others contain PACOR library calls that would have to be removed. PICS also uses 2 widgets
from Bellcore obtained from the Internet.

In summary, PICS will need to contribute its widgets to the Renaissance widget library and should
add additional customization options to meet the long-term Renaissance goal of a high degree of
user customization. However, none of these changes to conform to user interface guidelines will
cause major impacts in the near term.

User Services Transition Plan 4-29 August 29, 1994

Renaissance

4.8.1.4 Renaissance Guidelines

The status of PICS compliance with Renaissance guidelines is shown in the table below. A
detailed discussion follows the table.

GUIDELINE STATUS COMMENTS
Platforms Solaris Solaris 2.3
COTS Usage Oracle CHI contains embedded SQL in an isolated library
Ren Interfaces TBD
Documentation partial No current plan for documentation for system integrators
Maturity Rel 1
On-line Help planned Being given low priority so far
Performance partial Adding user feedback of this type; only needed in a few situations
Portability started Investigating port to HP as initial Renaissance testbed activity
Support Availability limited No plans to support system integration teams
Verbatim reuse yes

PICS is currently being developed on Sun SPARC processors running the Solaris 2.3 operating
system. No ports to other platforms have been attempted to date, though a Renaissance testbed
activity has been initiated to begin studying the impacts caused by such a port. SQL calls are used
to retrieve data for the PICS display; these Oracle routines are the only COTS package being
utilized at run-time by PICS.

Changes to PICS interfaces with other processes are likely with Renaissance and will cause a
significant software impact. The new common event format and event logging call will require
PICS software changes to adapt to the new calling sequence and message formatting requirements.
If process control is no longer through sockets, the impact will be even larger.

PICS will also need to plan for major changes to set up the documentation and personnel to
support use of this software product by mission development teams acting as system integrators.
This enhanced support will need to include online help for the users. Although online help is a
current PICS requirement, it has not yet been given a high priority and is not scheduled for
implementation in the near term.

In summary, PICS will require several significant changes to meet the Renaissance guidelines that
have been established. Online help, documentation for system integrators, and a support staff will
need to be added. Software porting efforts will need to be stepped up, and significant software
changes may be needed to support new Renaissance intertask communication mechanisms.

4.8.2 Action Plan

The PACOR II project has an existing mechanism to handle requests for updates to PACOR II
technology. This DCR mechanism allows interested parties to request a change and receive back a
response from the PACOR II Configuration Management Board All changes to PICS identified in
this transition plan will be turned into PACOR II DCRs. Each DCR will be costed and resources
to implement the change will be allocated if the DCR is approved. The changes will be undertaken
according to a TBD schedule.

User Services Transition Plan 4-30 August 29, 1994

Renaissance

4.9 Quality Analysis Workstation Subsystem (QAWS)

The Quality Analysis Workstation Subsystem (QAWS) serves as an off-line analysis tool server.
The system is designed to permit troubleshooting of data/spacecraft, internal system, and network
anomalies without impact to ongoing operations.

The following subsections describe the approach for transitioning QAWS for use with
Renaissance. The first subsection compares the existing legacy building block with the user
services standards and guidelines defined in the Renaissance User Interface Implementation Guide.
The remaining subsections describe the actions to be taken to update QAWS and the schedule for
completing these activities.

4.9.1 Mapping to Standards and Guidelines

This section presents the results of the comparison of the current QAWS implementation with the
standards and guidelines presented in the Renaissance User Interface Implementation Guide. The
results are divided up into the four categories of standards and guidelines defined in that document.

4.9.1.1 User Interface Standards

The status of QAWS compliance with user interface standards is shown in the table below. A
detailed discussion follows the table.

STANDARD STATUS COMMENTS
X11 R5
Motif 1.2.3
Common Desktop Env no No file manager or desktop integrated to date
Ren Style Principles yes, so far Strive for compliance with Motif Style Guide and PACOR II guidelines

The QAWS CHI software is based on X11R5 and Motif 1.2.3 -- the same versions of these
commercial user interface technology that have been chosen for the initial release of CDE.
However, the PACOR II user environment has not yet included a desktop manager product such
as CDE. QAWS will therefore need to build the icons, scripts, action definitions, and file types for
CDE integration from scratch. PACOR II has always worked toward OSF/Motif Style Guide
compliance and has followed an internal set of style principles. It is anticipated that QAWS with
thus have a high degree of compliance with the Renaissance style principles
that will be based on such principles.

In summary, the one significant transition to meet the user interface standards requirements is to
achieve CDE compliance. Some changes to conform to Renaissance style principles may be
required but are not anticipated to be major in nature.

4.9.1.2 Renaissance Standards

The status of QAWS compliance with Renaissance standards is shown in the table below. A
detailed discussion follows the table.

User Services Transition Plan 4-31 August 29, 1994

Renaissance

STANDARD STATUS COMMENTS
Language C Limited experience with object-oriented technologies
POSIX isolated BSD socket usage isolated in library; otherwise, POSIX compliant
Ren Develop Stds TBD Development standards are still TBD

All QAWS development is currently in C. No plans have been made to consider an object-oriented
programming environment for the future. If Renaissance requires such an approach, PACOR
personnel would require training and lead time to convert to the new methodology. PACOR II
does have an existing requirement for
POSIX compliance. All system calls that are not defined within the POSIX specifications must be
isolated in separate libraries. This isolation has been achieved by the Berkeley socket library calls
used in QAWS.

In summary, no significant changes are currently anticipated for QAWS to conform to the current
Renaissance standards. However, future Renaissance requirements to follow development
standards or utilize object-oriented techniques could necessitate substantial change to the QAWS
development approach.

4.9.1.3 User Interface Guidelines

The status of QAWS compliance with user interface guidelines is shown in the table below. A
detailed discussion follows the table.

GUIDELINE STATUS COMMENTS
Import/Export no req't
Scripting no req't
Customizable by user partial Only supported through X windows app-defaults files
Decoupled from app yes Socket interface for control; SQL interface to get data
Layout/code separate? yes, UIL Builder Xcessory used to maintain UIL
Custom widgets 1 Widget man page written

QAWS currently possesses no requirements for user transfer of data with other applications or
scripting of user operations. Data exchange with other processes is accomplished through SQL
calls to the Oracle data base. QAWS currently allows customization through the X Windows app-
defaults file in the user's home directory, although this capability is not currently heavily used. No
menu or graphical interface for user customization is currently supported. The QAWS user
interface software is clearly decoupled from the underlying application and the layout is also
maintained separately as UIL. However, the application portions of QAWS should eventually be
moved out of the user services functional area. The QAWS widget will only need minor changes
to be readied for submission to the Renaissance widget library.

In summary, QAWS will need to contribute its widget to the Renaissance widget library in the
short-term. Long-term changes include adding additional customization options to meet the
Renaissance goal of a high degree of user customization and moving some software elements into
other Renaissance functional areas. However, none of these changes to conform to user interface
guidelines will cause major impacts in the near term.

User Services Transition Plan 4-32 August 29, 1994

Renaissance

4.9.1.4 Renaissance Guidelines

The status of QAWS compliance with Renaissance guidelines is shown in the table below. A
detailed discussion follows the table.

GUIDELINE STATUS COMMENTS
Platforms Solaris Solaris 2.3
COTS Usage Oracle CHI contains embedded SQL in an isolated library
Ren Interfaces TBD
Documentation partial No current plan for documentation for system integrators
Maturity Rel 1
On-line Help planned Being given low priority so far
Performance partial Adding user feedback of this type; only needed in a few situations
Portability started Investigating port to HP as initial Renaissance testbed activity
Support Availability limited No plans to support system integration teams
Verbatim reuse yes

QAWS is currently being developed on Sun SPARC processors running the Solaris 2.3 operating
system. No ports to other platforms have been attempted to date, though a Renaissance testbed
activity has been initiated to begin studying the impacts caused by such a port. SQL calls are used
to retrieve data for the QAWS display; these Oracle routines are the only COTS package being
utilized at run-time by QAWS.

Changes to QAWS interfaces with other processes are likely with Renaissance and will cause a
significant software impact. The new common event format and event logging call will require
QAWS software changes to adapt to the new calling sequence and message formatting
requirements. If process control is no longer through sockets, the impact will be even larger.
Furthermore, the QAWS data interface will also need to be changed to reflect the new environment
in which this tool will be used.

QAWS will also need to plan for major changes to set up the documentation and personnel to
support use of this software product by mission development teams acting as system integrators.
This enhanced support will need to include online help for the users. Although online help is a
current QAWS requirement, it has not yet been given a high priority and is not scheduled for
implementation in the near term.

In summary, QAWS will require several significant changes to meet the Renaissance guidelines
that have been established. Online help, documentation for system integrators, and a support staff
will need to be added. Software porting efforts will need to be stepped up, and significant
software changes will be needed to support new Renaissance intertask communication
mechanisms.

4.9.2 Action Plan

The PACOR II project has an existing mechanism to handle requests for updates to PACOR II
technology. This DCR mechanism allows interested parties to request a change and receive back a
response from the PACOR II Configuration Management Board All changes to QAWS identified
in this transition plan will be turned into PACOR II DCRs. Each DCR will be costed and
resources to implement the change will be allocated if the DCR is approved. The changes will be
undertaken according to a TBD schedule.

User Services Transition Plan 4-33 August 29, 1994

Renaissance

4.10 SOHO Simulator USER INTERFACE

Information on the transition of the SOHO simulator user interface is TBS.

User Services Transition Plan 4-34 August 29, 1994

